
Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 1

 A Comparative Analysis of Entity-Relationship Diagrams1

Il-Yeol Song
Drexel University

Mary Evans

USConnect

E.K. Park
U.S. Naval Academy

 The purpose of this article is to collect widely used entity-relationship diagram

(ERD) notations and so their features can be easily compared, understood, and
converted from one notation to another. We collected ten different ERD notations
from text books and CASE tools. Each notation is depicted using a common
problem and includes a discussion of each characteristic and notation. According
to our investigation, we have found that ERD features and notations are different
in seven features: whether they allow n-ary relationships, whether they allow
attributes in a relationship, how they represent cardinality and participation
constraints, the place where they specify constraints, whether they depict
overlapping and disjoint subclass entity-types, whether they show total/partial
specialization, and whether they model the foreign key at the ERD level. We
conclude that many of the ER diagrams we studied are different in how they depict
the criteria listed above. In order to convert one diagram to another, some
notations must be extended and carefully converted from one notation into
another. We also discuss the limitations of existing CASE tools in terms of
modeling capabilities and supporting diagrams.

Keywords: Entity-Relationship Diagrams, ERD, design, modeling, CASE

1Correspondence should be addressed to Il-Yeol Song, College of Information Science and Technology, Drexel
University, 32nd and Chestnut Streets, Philadelphia, PA 19104. Email: songiy@post.drexel.edu

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 2

1 INTRODUCTION

The purpose of this article is to collect widely used entity-relationship diagram (ERD) notations
and so their features can be easily compared, understood, and converted from one notation to
another. The types of ERDs we examine in this article are those used in database textbooks or
CASE Tools used for the design of relational databases. We extract the most significant features
of each method and notation, rather than exhaustively compare all the features of those methods.

 The Entity-Relationship diagram has been widely used in structured analysis and
conceptual modeling. The ER approach is easy to understand, powerful to model real-world
problems and readily translated into a database schema. The ERD views that the real world
consists of a collection of business entities, the relationships between them and the attributes used
to describe them. Other ER modeling semantics used by most methodologies include cardinality,
participation and generalization. The typical semantic constructs of the ER model and its
variations we consider in this article include the following features:

 • An entity type represents a distinguishable object type. In real-world modeling,

an entity type is an important business object that contains more than one property.
We will simply call an entity, instead of an entity type, as in many practice. A weak
entity is a special type of entity whose existence is dependent upon another entity
called the owner entity. This dependency is called existence dependency. Thus a
weak entity does not have its own identifier. Hence, the identifier of a weak entity
is a combination of the identifier of the owner entity and the partial key of the
weak entity.

 • A relationship type represents an association between or among several entities.

In real-world modeling, a relationship represents an association that needs to be
remembered by the database system. We will simply call relationship, instead of
relationship type. A relationship type can be unary, binary, or n-ary, depending on
whether the number of entities involved in the relationship is 1, 2 or more than 2.

 • An attribute is a property that is used to describe an entity or a relationship. Note

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 3

that some methods do not allow an attribute in a relationship. An attribute which
is a primary key of another relation is called a foreign key.

 • A cardinality constraint specifies the number of relationship instances in which

an entity can participate. They are in the form of 1:1, 1:N, M:N, in binary
relationships, and 1:1:1, 1:1:N, 1:N:M, and M:N:P in ternary relationships. This
constraint corresponds to maximum cardinality in some notations.

 • A participation constraint specifies whether an entity instance can exist without

participating in a relationship with another entity. This constraint corresponds to
minimum constraints in some notations. Total (or mandatory) and partial (or
optional) participation are the two types of participation. Total participation exists
when an entity instance cannot exist without participating in a relationship with
another entity instance. Partial participation exists when the entity instance can
exist without participating in a relationship with another entity instance. Some
methods combine cardinality and participation constraints and represent them using
minimum and maximum constraints in the form of (min, max) notation.

 • Generalization/specialization specifies superclass and subclass relationship

between entity types. In a generalization/specialization hierarchy, there are two
constraints - disjoint and complete [1]. The disjoint constraint specifies whether an
entity can appear in more than one subclass entity (overlapping) or not (disjoint).
The specialization is said to allow overlapping if one entity instance in the super
class can appear in multiple subclass entities. Otherwise, the subclasses are
disjoint. The second constraint is the completeness constraint. It specifies
whether a super class entity instance can exist without belonging to at least one
subclass entity (partial specialization) or not (total specialization).

 We note that we discuss only the above constructs which are widely discussed in literature
and CASE tools. We do not discuss more specialized constructs such as category or aggregation,
which are discussed in only Elmasri and Navathe's book [1]. We also exclude ERD notations that
has name of object-oriented. For the comparison of ERD and object-oriented notations, see
Kushner, Song, and Whang [2], and for the comparison of various notations for object-oriented
analysis, see Lind, Song, and Park [3]. We also exclude the variation of ERDs which are

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 4

modified to include object-oriented features, such as, complex entity relationship model [4] or

ERC+ model [5].

 A variety of ERD notations has been developed to represent above concepts. Some of
them allow n-ary relationships while others do not. Some notations allow attributes to be
modeled in relationships. Some of them represent cardinality and participation constraints
separately, while others use min/max notations by combining cardinality and participation
constraints. Some of them specify the cardinality constraints across the relationship while others
near the entity. Authors of database text books and CASE Tools use different ERD notations.
These cause greater confusion and difficulty to novice database designers and users, and make the
ER diagram less-transferable among authors, textbooks and CASE Tools. Hence, in this article
we collected ten widely used ERD notations from various textbooks and CASE Tools. Based on
our investigation, we compare/contrast them by the following seven points:

 1) The way they allow n-ary relationships or not (see Section 2.1)

2) The way they represent cardinality and participation constraints or min/max notations
(see Section 2.2)

 3) The place they specify the constraints (see Section,2.3)
 4) An attribute shown attached to a relationship,
 5) Foreign keys modeled at the ERD level,
 6) Overlapping and disjoint subclass entity types depicted, and
 7) Complete and partial specialization

 The ten selected methods are Chen [6], DDEW [7] or Teorey [8], Elmasri & Navathe [1],
Korth & Silberschatz [9], McFadden & Hoffer [10], Batini, Ceri, & Navathe [11], Oracle
CASE*Methods [12], Information Engineering [13], IDEF1X used in ERWin [14], and Bachman
[15, 16].

 An example situation is described in order to discuss and illustrate each ERD technique.

 The rest of this article is organized as follows: Section 2 introduces the definitions which
need illustration, and Section 3 illustrates the ten ERD models that are depicted for the sample
database problem. Section 4 summarizes and evaluates the differences of those ERD notations.
Section 5 concludes our paper.

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 5

2 TERMINOLOGY

In this section, we illustrate the following three different points of ER diagrams:
 - how they depict n-ary relationships in binary models;
 - where they represent cardinality and participation constraints;
 - how they represent cardinality and participation constraints.

2.1 Binary Models vs. N-ary Models

Some ERD methods are called Binary models, in that they allow only binary relationships and do
not allow ternary or higher relationships. In binary models, every object that would have an
attribute is considered an entity. Thus binary models do not allow an attribute in a relationship,
and hence do not use a symbol, such as a diamond, to represent a relationship (see Figure 3(d)).
In those binary models, one way to handle a ternary relationship is to convert it into an entity
type. In binary models, a many-to-many relationship with at least one non-key attribute is also
converted into an entity type.

 A binary relationship exists when one instance of an entity can be associated with one
instance of another associated entity. A ternary relationship exists when one instance of an entity
can be associated with a pair of instances of the other two associated entities. These three entity
instances must be associated at the same time in the ternary relationship. For example, the
relationship BORROW among STUDENT, MAGAZINE, and BOOK in a library context cannot
be modeled as a ternary relationship because a student does not have to borrow both a magazine
and a book. We note that the interpretation of a ternary relationship is based on Teorey, Fry, &
Yang [17]. In Figure 1(a), a pair of a PROJECT and a PART can be associated with P
SUPPLIERS, a pair of a PROJECT and a SUPPLIER can be associated with N PARTS, and a
pair of a PART and a SUPPLIER can be associated with M PROJECTS.

 Figure 1 shows two ternary relationships and a set of binary relationships that simulate the
ternary relationships. That is, a single ternary relationship is replaced by three one-to-many
relationships. In Figure 1(a) SUPPLY is modeled as a ternary relationship and thus the identifier
of the SUPPLY relationship is the combination of the identifiers of three participating entity types.
In Figure 1(b) SUPPLY relationship is converted into an entity, and thus naturally SUPPLY entity

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 6

can have its own single-attribute identifier. The new entity is called the intersection entity or the
associative entity or Gerund [18, 10]. Note that the new gerund always has many side
cardinality, regardless of the cardinality of the original ternary relationship, as shown in Figure
1(b) and 1(d).

 However, the semantics of a ternary relationship is not always the same as three binary
relationships and the gerund [10]. For example, suppose we have many-to-many-to-one
relationship as shown in Figure 1(c). That is, for a given pair of a PROJECT and a PART, there
is only one SUPPLIER. In binary models, Figure 1(c) is represented as in Figure 1(d). Note that
Figure 1(d) is identical to Figure 1(b). In Figure 1 (d), comparing with Figure 1(c), we lose the
semantics that a PART used by a PROJECT has only one supplier. There are other differences
between binary and ternary relationships [19, 20]. Jones and Song show that not every binary
representations of ternary relationships are functional-dependency preserving [20]. This implies
that n-ary models are semantically more powerful than binary models. Methods that allow n-ary
relationships and those that allow only binary relationships are summarized in Table 1 in Section
4.

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 7

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 8

2.2 Look Across & Look Here Notations

To our knowledge, the terminology Look Across and Look Here was first used by Ferg [21] to
refer to the place where the cardinality (maximum) or participation (minimum) constraints are
specified in ER diagrams. The cardinality and participation constraints can be specified by
looking across the relationship from the other direction or looking here first. The cardinality
constraints in example (a) of Figure 2 shows Look Across notation and (b) shows Look Here

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 9

notation. In Look Across notation, the fact that one employee works for only one department is
represented by placing 1 across the relationship WORKS FOR from EMPLOYEE entity. In Look
Here notation, the fact, that one department can have many employees is specified by placing N
across the relationship WORKS FOR from DEPARTMENT entity. Figure 1 uses Look Across
notation. Section 4 summarizes the methods that use Look Across and Look Here conventions.

2.3 Cardinality & Participation Constraints

The cardinality constraint represents the maximum number of entity instances that may or must
occur in order to participate in the relationship. The participation constraint represents the
minimum number of entity instances that must occur in order to participate in the relationship.
Thus, the participation constraint represents the total (mandatory) or partial (optional) existence
of an entity instance as it relates to its relationship to another entity.
 Figure 3 shows several popular ERD notations representing the cardinality constraint (one
employee can work for one department and one department can have many employees) and the
participation constraint (one employee can exist without working for a department (partial), but
department cannot exist without having an employee (total)).

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 10

 In Figure 3 (a) and (b), the cardinality constraints used Look Across notation, while the
participation constraints used the Look Here notation.

 In Figure 3(a), total participation is represented by a closed circle, while partial
participation uses an open circle. In Figure 3(b), total participation is represented by a double
line, while partial participation is represented by a single line. In Figure 3(c), the crowfoot

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 11

notation with the diamond [18] is used. In Figure 3(d), crowfoot notation without the diamond is
used [13]. In Figure 3(e), (min, max) notation is used in the Look Here convention, and finally, in
Figure 3(f), (min, max) notation is used in the Look Across convention [18].

 In Figure 3(a) and (b), the cardinality and participation constraints are separated, while in
3(c), (d), (e), and (f) they are combined in (min, max) notation. See Ferg [21] for a more detailed
discussion of various cardinality and participation constraints.

3 VARIOUS ERD NOTATIONS

In this section, we show the various notations of ERD used in different CASE Tools and text
books. The problem description of the sample database is as follows:

 The RESEARCH INSTITUTE database keeps track of its employees, departments and

projects. The research institute is arranged by departments. Each department has a name
and number. A department controls a number of projects. Each project has a name,
number and project type. Each project is using zero or more parts supplied by any number
of suppliers. One supplier can supply many parts to many projects, but must supply at
least one part to a project. The research projects are subdivided into internal and external
funded projects. Funded projects are subdivided by foundation and corporation. Each
foundation and corporation associated with the institute is tracked by account. Each
account stores a name, number, contract and account type. The employee's name, social
security number and employee type are stored. An employee may be assigned to a
department and may work on several projects, controlled by more than one department.
The dependent's name and sex are stored for each employee. Most of the employees are
subdivided into three major employee types- research, technical and secretary.

From the example described above, the following entity and relationship types are specified:

 • Entity types are EMPLOYEE, DEPARTMENT, PROJECT,

DEPENDENT, SUPPLIER, PART and ACCOUNT.
 • Relationship types are WORKS FOR, WORKS ON, DEPENDENT OF,

CONTROLS, ORDERS and SPONSORS.

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 12

For the techniques of identifying entity types and relationship types, see Song and Froehlich [22].
The handling of attributes, generalization, participation and cardinality vary the most with the
styles of each information modeling technique. The various modeling style techniques are
described in the following sections.

3.1 Chen Notation

The entity relationship diagram was introduced by Chen in 1976 [6]. Figure 4 shows the example
ERD using Chen's original notation with explicit notation for participation constraints. In this
ERD, entities are represented by a box and relationship types are symbolized by a diamond. A
double rectangle and a double diamond represent a weak entity type and a weak relationship,
respectively. Attributes are represented by oval symbols. "Many" cardinality is indicated with the
"N" near the entity's box, while a "1" indicates "one". Closed circles represent total participation
and open circles represent partial participation.

The original Chen's notation [6] had notations only for entities, relationships, attributes and
cardinality, but did not use generalization or participation constraint. Later Scheuermann,
Schiffner, and Weber added generalization, aggregation, and participation constraints [23]. (In
participation constraint, they use a closed circle for total participation, but do not use any notation
for partial participation. We use an open circle to explicitly represent the partial participation.)
The cardinality is represented by Look Across notation. The participation constraints uses Look
Here notation. The ER Designer developed by Chen & Associates [18] supports this notation as
well as (min, max) notation, as shown in Figure 3(f), and crowfoot notation, as shown in Figure
3(c). Entity identifiers are represented by double ellipses in Chen's notation [6].

3.2 Teorey Notation

Figure 5 shows the example ERD used in Teorey's notation [17, 8]. Even though his notation
was first used in DDEW project [7], we call Teorey's notation since he popularized the notation
through his articles. The entity is depicted by a box and assigned an unique name. Relationship
type is depicted by a diamond with the name listed beside it. Cardinality is shown by shading the
relationship diamond. The many side of the diamond is shaded while the one-side is not shaded.

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 13

Generalization connects the is-a relationships with hollow arrows. A weak entity is depicted with
a box surrounded with double bars. The ternary relationship is depicted with three entities
connected with a relationship diamond. ERDs in this notation do not always show attributes.
Total participation is shown with a black dot or is not drawn and is the default syntax. Partial
participation is shown with a hollow dot. This notation uses both cardinality and participation
constraints using Look Across notation. Neither disjoint nor completeness constraints are
supported. We could not find any example ER diagrams illustrating the concept of entity
identifiers from Teorey's book [8]. We note that Teorey's new book [24] uses Chen's notation.

 We observe that, when participation constraint is represented by Look Across notation,
the participation constraint for ternary relationship cannot be properly represented. In Figure 4,
PROJECT entity has a partial participation with ORDER relationship. In Figure 5, this partial
participation cannot be properly represented in ORDER ternary relationship since there are two
entities across PROJECT entity. This implies that in n-ary models, participation constraints must
use Look Here convention. If we want to use Look Across convention for participation
constraint, we must use the binary models.

3.3 Elmasri & Navathe Notation

Figure 6 shows the example ERD using Elmasri & Navathe's notation [1]. The entity is depicted
by a box and it is assigned an unique name. Cardinality constraints are shown as 1 (one), N
(many), or M (second relationship in many-to-many). A weak entity is depicted with a box
surrounded with double bars. The ternary relationship is depicted with three entities. Attributes
are shown with a labeled ellipses circle with a line drawn in the entity it belongs. The entity
identifier is distinguished with a line drawn under the attribute's name. The notation distinguishes
a single-valued attribute from a multivalued attribute, a composite attribute and a derived
attribute. Multivalued attributes are shown with a double egg-like circle. A derived attribute is
shown as a dotted ellipse circle. Total participation is shown with a double relationship line
between an entity and its associated relationship, while partial participation is shown with a single
line. Cardinality constraints use Look Across notation and participation constraints use Look
Here notation.

 In the generalization/specialization, both disjoint constraints and completeness constraint
are fully represented. Disjoint subclasses are represented with a "d" symbol in a circle.

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 14

Overlapping subclasses are depicted with a connection between the superclass to the subclasses
with a letter "o" symbol in a circle. An arc connects the circle to any type of subclass described
above. Total specialization is represented by a double line and partial specialization is
represented by a single line from the super class to the circle with either "d" or "o". Optionally, a
discriminating attribute that classify subclasses can be shown. We note that Elmasri and Navathe
discuss the notion of categorization which was first proposed by Elmasri, Weddreyer, and Hevner
[25]. Categorization is a subclass built from two different superclasses. It is shown with a
connection between the superclasses to the subclass with a U symbol in a circle. We do not
discuss the Category in this article, since it is not supported by any other ERD methods discussed
in this article. Among the ERD notations compared in this article, Elmasri and Navathe's notation
is the most semantically rich in terms of modeling components and constraints.

3.4 Korth & Silberschatz Notation

Figure 7 shows the example ERD using Korth & Silberschatz's notation [9]. Entity types are
represented as rectangles. Attributes are symbolized as ellipses. Relationship types are
represented as diamonds. Entities are linked with attributes with lines. Entity and relationship
types are linked together with lines. Cardinality is distinguished between the entity and
relationship either by a directed line (arrow) for one-side or an undirected line to represent many-
side. Cardinality constraint uses Look Across notation. Generalization/specialization is shown
with a triangle labeled with ISA. This joins the higher-level entity to the lower-level entity. While
Generalization (which does not allow overlapping among subentity types) uses thick lines between
the ISA triangle and each entity, specialization (which allow overlapping among subentity types)
uses the regular thin lines. Participation is not depicted in Korth & Silberschatz's notation.
Hence, the completeness constraint in a generalization hierarchy is not supported. There is no
notation used for entity identifiers.

3.5 McFadden & Hoffer Notation

Figure 8 shows the example ERD using McFadden & Hoffer's notation [10]. Entity types are
represented as rectangles. Attributes are symbolized as ellipses. Relationship types are
represented as diamonds. Entities are linked with attributes with lines. Entity and relationship
types are linked together with lines. A cardinality constraint is represented by a bar for one-side
and crowfoot for many cardinality. Ternary relationships are allowed in this method. A

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 15

participation constraints represented by "1" for total and "0" for partial. Both cardinality and
participation constraints use Look Across notation using (min, max) form. Note that in this
method we used a gerund to represent the ternary relationship ORDER. The reason is that a
participation constraint in LOOK ACROSS convention cannot be represented in a ternary
relationship. By converting the ternary relationship into a gerund, we can represent the
participation constraint of the PROJECT entity.

 Generalization hierarchy is shown with a round box labeled with ISA. This joins the
superclass entity to the lower-level entity. Disjoint constraint is represented by an arc connecting
lines to subclass entities. Partial specialization in this notation can be represented by adding an
empty rectangle implying an undesignated subclass entity. Interestingly, McFadden & Hoffer
[10] do not discuss the weak entity or dependent entity concept.

3.6 BATINI, CERI, and NAVATHE Notation

Figure 9 illustrates the example ERD in Batini, Ceri, and Navathe's notation style [11]. Entity
types are represented as rectangles. Attributes are symbolized as small circles with a line
connected to its entity and its attribute name labeled beside it. Primary key attributes are shown
with the black circle while others are shown with an open circle. For entities with a composite
primary keys, a line and black circle are drawn across those attributes that make up the primary
key. Relationship types are represented as diamonds. Entities are linked with attributes with
lines. Entity and relationship types are linked together with lines. Cardinality is indicated by the
characters "0" (zero), "1" (one), and "N" (many). Participation and cardinality constraints are
combined into the (min, max) form, such as (0,N) or (1,1), respectively. Look Here notation is
used for both cardinality and participation constraints. Generalization and specialization are
shown with a directed arrow that joins the lower-level entity to the higher-level entity. They do
not distinguish between disjoint and overlapping among subentities in the hierarchy. Ternary
relationships are allowed in this method. The interpretation of ternary relationships using Look
Here notation needs elaboration. In Figure 9, a project can have minimum zero and maximum
many orders; a supplier (part) have minimum one and maximum many orders. The ternary
semantics of Batini, Ceri, and Navathe implies the cardinality when a ternary relationship is
converted into a gerund. Note that this interpretation is different from what Chen, Teorey, and
Elmasri & Navathe used. The latter used "for a pair of supplier and a part, there are zero or many

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 16

projects." We note that the weak entity notation is not directly represented as in other methods
but they are implied by a composite primary key connected through two entity types.

3.7 Oracle's CASE*METHOD Notation

Figure 10 shows the example ERD using the Oracle's CASE*METHOD notation [12]. This
method belongs to a binary model which does not allow a n-ary relationship and an attribute to be
shown in a relationship. Hence, a relationship is just represented by a line. Entity type is
represented as a box with the entity name capitalized and its attributes are listed below in lower
case. Relationship type is shown as a line between associated entities. Cardinality constraints
use Look Across and participation constraints use Look Here notation. Many cardinality is
indicated with crowfoot at the end of the line. A single line represents one cardinality. The
participation constraint is called optionally, and the term mandatory/optional is used instead of
total/partial. Total participation is shown as a solid line while a dotted line indicates partial
participation. Naming each end of the relationship reflects the participation and identifies the
association between the entities. Optional attributes, whose value may be the null value, are
illustrated by a small 'o' in front of the attribute name. Mandatory attributes, whose value is
always required, are indicated by a small '*' in front of the name. A unique identifier is the
primary key which identifies each unique instance in the entity. The primary keys are represented
with a '#' preceding the attribute that contributes to the identifier.

 Subclass entity subtypes are shown as an inner box within the superclass entity type.
Disjoint constraints and completeness constraints in a generalization hierarchy are not explicitly
discussed in [12]. Oracle CASE*METHOD supports mutually exclusive relationships between
one entity and two relationships, and are shown with an arc with the black dot across the mutually
exclusive relationship ends. In this situation, an entity instance can be associated with only one of
the two mutually exclusive relationship. The mutually exclusive relationship notation can be used
to simulate disjoint subclasses. For example, in Figure 10, we used an exclusive arc to represent
the disjoint subclasses, as in Figure 6-3 of [12].

 In Figure 10, we represented the ternary relationship by converting it into an entity type
(called intersection entity) and adding a binary relationship between the intersection entity and
other entities. Note that the notion of weak entity is not directly represented in Oracle
CASE*Method. Rather, it can be simulated by a bar and a little diamond. A bar in many-side

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 17

entity represents the situation that the primary key of one-side entity contributes the identifier of
the many-side entity. The diamond represents the non-transferability, which means that the entity
in many-side, once connected, cannot be reconnected to another entity in one side. This property
is similar to existence dependency in typical ER modeling. Many-to-many relationships are
allowed, but they are usually decomposed into two one-to-many relationships. Qualified limits of
degree are represented by =,>,>,<,< to define cardinality constraints.

3.8 Information Engineering Notation

Information Engineering (IE) method was originally developed by Martin & Finklestein. It was
later revised by Martin [13]. Our discussion is mainly based on Martin's revised notation [13].
The IE method is also a binary method which does not allow a ternary relationship nor does it
show attributes related to a relationship. Both cardinality and participation constraints are
combined into min/max (bar and crowfoot) notation, and are represented with the Look Across
convention.

 Figure 11 shows the example ERD using the Information Engineering notation. Entity
type is represented as a box. The relationship is shown as a line connecting two associated
entities and given a name. Cardinality is depicted as follows:

 one and only one Two bars at end of line or single bar
 zero or one Hollow dot and one bar
 one or more One bar and crowfoot
 zero, one or more Hollow dot and crowfoot
 more than one Crowfoot.

 The relationship between mutually exclusive entity types is represented with a black dot
(See Figure 11). Entity subtypes are created when they have different associations to other entity
types. Entity subtypes are shown in inner boxes within the super class entity type and subdivided
by solid lines. The solid line represents disjoint subclasses. Overlapping subclasses can be
represented by using a dashed line between two subclasses. A blank subtype box indicates that
there are other subtypes not shown on the entity-relationship diagram, showing a partial
specialization. When the specialization hierarchy is complex, a decomposition diagram can also
be used. Instead of using inner boxes for subclasses, they are modeled as rectangles (entities)

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 18

outside the superclass and connected by lines. Disjoint subclasses are represented by a black dot.
This is illustrated in FOUNDATION and CORPORATE subclasses in Figure 11. An open circle is
added near the black dot when not every superclass entity instance participates in one of the
subclasses, showing a partial specialization.

 The popular CASE tools using the IE notation are IEF [26] and ADW [27]. In ADW,
they use the term Fundamental entity for regular entity in other methods, the Associative entity
for a relationship-converted entity, and the Attributive entity for dependent which serves to
describe another entity type. In the IE method, attributes are not usually directly shown on the
ER diagram, but they are entered into an data dictionary. As previously stated, the Information
engineering method is a binary-modeling technique. So, this method does not allow a relationship
to have an attribute. Attributes belonging to one-to-many relationships are modeled under the
many-side entity type. When a many-to-many relationship has at least one descriptive attribute,
the relationship is modeled as an entity type. ADW call this new entity type an associative
entity, and adds a diamond inside the rectangle. (See WORKS_ON in Figure 11). Note that in
this case, the associative entity always has a many side. Since IE does not allow a ternary
relationship either, the ORDER relationship in the sample ERD was represented as an associative
entity in Figure 11. In the IE method, as in Oracle CASE*Method, weak entities are not directly
represented. However, the identifier dependency can be shown in IEF [26]. In IEF, we can
superimposes an I near the dependent entity to represent the fact that the identifier of the
dependent entity is the combination of the partial key of the dependent entity and the identifier of
the other side entity type (See DEPENDENT in Figure 11).

 We note that IE notation shows the relationship names in both directions. A label above a
horizontal line is used when the relationship is read from left to right. A label below a horizontal
line is used when the relationship is read from right to left. In Figure 11, however, we did not use
the two-way naming practice of the IE method in order not to create any additional labels.

3.9 IDEF1X Information Model Notation

Figure 12 shows the example ERD using the IDEF1X Information Model notation [14]. IDEF1X
is a binary model which does not allow n-ary relationships or many-to-many relationships with
non-key attributes. Thus, in IDEF1X, any object with at least one information-bearing attribute is
modeled as an entity type. The regular entity type is called the independent entity. It is

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 19

represented by a closed box with the name of the entity at the top. The attributes of the entity are
listed inside the box. The primary keys are listed in the top section of the box. The data (non-
primary-key) attributes are noted in the bottom section of the box. Independent entities or parent
entities are entities that do not depend on another entity for its identification. This is represented
with a square cornered box. In IDEF1X, most relationships are either one-to-one, one-to-many
or many-to-many relationships without non-key attributes. Whenever a many-to-many
relationship has at least one non-key attributes, it is modeled as an entity type called an associative
entity. A ternary relationship is also modeled as an associative entity as in Figure 1. Dependent
entity or child entity depends on another entity for its identification. A dependent entity is
represented by a round cornered box. IDEF1X attribute notation conventions are detailed below:

 attribute(FK) Foreign Key
 role-name.attribute(FK) Role name (new name for FK)
 attribute(AKn) Alternate key
 attribute(IEn) Inversion entry (non-unique access identifier)
 group(c1,c2,c3) Group attribute
 attribute(fk1, fk2)(FK) Unified FK.

Relationship notation is subdivided into identifying and non-identifying associations between
entities. An identifying relationship is a relationship in which all primary key attributes of the
parent entity become part of the primary key attributes of the child entity. This simulates the
notion of the weak entity of the ER model. A non-identifying relationship is a relationship in
which the primary key of the parent entity does not become part of the primary key of the child
entity but a foreign key in the child entity. A identifying relationship is shown as a solid line
connecting entities while a non-identifying relationship is depicted by a dotted line.

 In IDEF1X, the cardinality constraint and participation constraint are combined into
min/max constraint style. These min/max constraints are represented using the Look Across
notation. Both graphical symbols and textual notations are used to represent the min/max
constraints. The single line, either solid or dotted, represents EXACTLY ONE. The closed dot
represents ZERO OR MORE. The closed dot with P near the dot represents ONE OR MORE.
The N represents EXACTLY N. The Z near the dot represents ZERO OR ONE.

 Note that IDEF1X distinguishes between identifying and nonidentifying relationships.

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 20

Identifying relationships always begin with cardinality exactly one as in EMPLOYEE entity to
DEPENDENT entity in Figure 12, since the primary key of the parent entity always become a
part of the primary key of the child entity. However, in nonidentifying relationships, the primary
key of the parent entity does not become a part of the primary key of the child entity. Instead, it
simply becomes a foreign key on the child entity. Thus, the parent entity may or may not
participate in the relationship with the child entity. For this problem, IDEF1X used a little
diamond to represent optional participation of ZERO OR ONE. This is illustrated in
DEPARTMENT entity, which means that an employee can have zero or one department.

 IDEF1X can distinguish between overlapping and disjoint subentities in a generalization.
It can also distinguish between a complete and an incomplete classification of subentities.
Overlapping is represented by multiple classification lines from the super entity (e.g.,
EMPLOYEE and PROJECT in Figure 12), while disjoint is represented by a single line from the
super entity (e.g., FUNDED PROJECT). A single line underneath a circle specifies a partial
specialization (meaning that not all categories are shown), while double line specifies an complete
specialization (meaning that all categories are shown). IDEF1X directly models foreign keys at
the ERD level. This notation is used in ERWin CASE Tool.

3.10 Bachman Notation

Figure 13 shows the example ERD using the Bachman Case tool of Bachman's notation [16].
Bachman's method is also a binary model. An entity is represented by a box. The relationship is
depicted as a line connecting the associated entities. The relationship is given a phrase to describe
the association at both ends of the line. Cardinality constraints use Look Across notation and
participation constraints use Look Here notation. Cardinality is shown by an arrow for many and
a single line for one. An open circle at the end of a relationship shows optional participation
between any pair of instances of associated entities. A filled-in or black circle indicates a
mandatory relationship between any pair of instances of the entities. When a many-to-many
relationship does not have a non-key attribute, the relationship is represented as a line. When a
many-to-many relationship has a non-key attribute, it is modeled as an entity type. The roles of
attributes are annotated in front of their names as follows:

 PK Primary key
 FK Foreign key

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 21

 PFK Primary key and Foreign key
 I Inherited attribute from the superclass entity

 Note that in Figure 12, a ternary relationship was represented in two steps. First, many-
to-many relationship between SUPPLIER and PART was modeled as an associative entity
SUPPLIED_PART. Then there is many-to-many relationship between PROJECT and
SUPPLIED-PART.

 In Bachman notation, a subclass is represented as an inner box within the superclass. The
notation, however, does not represent disjoint or completeness constraints in a specialization
hierarchy. Gane [12] also uses the same notation as Bachman. However, Gane represents
mutually exclusive relationships by connecting each subentity type with an arc. Entity subtypes are
shown within inner boxes. Bachman's method, as in IDEF1X, directly models foreign keys at the
ERD level. A little diamond near the arrow (many side) represents the fact that the primary key of
the one-side entity is used as a foreign key in the many-side entity.

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 22

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 23

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 24

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 25

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 26

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 27

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 28

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 29

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 30

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 31

4 ANALYSIS OF NOTATIONS

In Section 4.1, we summarize features of ten ERD methods discussed in this paper. We further
analyze those features in Section 4.2 and discuss the limitations of CASE tools using ERDs in
Section 4.3.

4.1 Summary of ERD Methods

The criteria we used for comparing ERD methods include binary or n-ary relationships,
relationships with or without attributes, cardinality & participation constraints, Look Across and
Look Here notations, disjoint and completeness constraints in generalization/specialization, and
the direct modeling of foreign keys at the ERD level. Table 1 classifies N-ary models from binary
relationships. Table II summarizes the various ways of representing cardinality and participation
constraints. Table III distinguishes ERD methods that model foreign keys at the ERD level.
Table IV summarizes all the features in detail.

N-ary Chen; Teorey; Elmasri & Navathe; Korth & Silberschatz; McFadden &
Hoffer; Batini, Ceri, & Navathe

Binary Oracle CASE*Methods; Information Engineering; IDEF1X; Bachman

 Table I Binary versus N-ary Notations

Cardinality and Participation Constraints can be represented as (Min, Max) notation.

(Min, Max) Look Here Batini, Ceri, & Navathe.

(Min, Max) Look Across Teorey1; McFadden & Hoffer; Information
Engineering; IDEF1X.

Participation Constraints: Look Here
Cardinality Constraints: Look Across

Chen; Elmasri & Navathe; Oracle
CASE*Method; Bachman.

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 32

Cardinality Constraints: Look Across
No participation constraint notation

Korth & Silberschatz.

 Table II: Cardinality & Participation versus (Min,Max) Constraints
 1 Total participation is not shown.

No Foreign Key at the
ERD level

Chen; Teorey; Elmasri & Navathe; Korth & Silberschatz; McFadden
& Hoffer; Batini, Ceri & Navathe; Oracle CASE*Method;
Information Engineering.

Modeling Foreign
Key at the ERD level

IDEF1X, Bachman.

 Table III: Modeling Foreign Key at the ERD level

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 33

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 34

4.2 Analysis of ERD Methods

We found that most ERD methods used in textbooks and CASE tools can be clearly classified as
either binary models or n-ary models.
The following characteristics summarize the binary models examined:

- Any object with an information-bearing attribute becomes an entity,
- Ternary relationships are not allowed,
- Attributes in a relationship are not allowed,
- Symbols (e.g., a diamond) are not used for a relationship,
- Many-to-many relationships are allowed at an earlier analysis stage, but are encouraged

to be decomposed into two one-to-many relationships,
- Many-to-many relationships with non-key attributes and ternary relationships are

converted into entity types called intersection entities or associative entities.

 The characteristics of n-ary models, most of all, are natural and allow direct modeling of
ternary relationships and many-to-many relationships. For example, when a many-to-many or a
ternary relationship does not need a unique identifier, we don't have to create an artificial entity as
in binary models. As discussed in Section 2.1, the binary models have at least two weaknesses.
The first one is that it cannot represent the semantics of ternary relationships correctly when the
ternary relationships are not many-to-many-many. The second one is that not every binary
representation of ternary relationships are functional-dependency preserving [20]. Rigorous
analysis of binary relationships and ternary relationships can be found in Song & Jones [19, 20]
and Jones & Song [28]. The two advantages of binary models are (1) the distinction between
entities and relationships is clear since any object with at least one descriptive attribute is an
entity; (2) the distinction between binary and ternary is simpler since there is no ternary
relationships.

 We also found that there are a variety of notations for cardinality and participation
constraints. We found that ERD methods that uses Look Across convention for participation
constraints cannot correctly represent semantics of a ternary relationship. See the discussion on
Teorey's and McFadden and Hoffer's. This problem can be solved by converting a ternary
relationship into a gerund.

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 35

 ERD methods that do not directly model foreign keys at the ERD level need an extra step
to convert ERDs to a relational schema. ERD methods that directly model foreign keys at the
ERD level need more effort at the analysis stage, but they can be readily converted into a
relational schema.

 One notation cannot be forced over another. Each notation offers their own advantages
and disadvantages. Many variations exist of the same modeling method and it is useful to know
how to convert from one notation to another. In order to convert from one notation to another,
less powerful method must be extended by concepts and notations. However, the semantics of
the similar constructs must be interpreted carefully and documented by additional constraints. For
example, the notion of weak entity is supported in Chen's and Elmasri and Navathe's notations.
The weak entity not only implies ID dependency (the primary key of the weak entity is the
combination of the primary key of parent entity and partial key of the weak entity), but also
supports existence dependency (whenever an instance of the parent entity s is removed, the
associated weak entity instances must be removed). The IE and IDEF1X methods only support
ID dependency, which may or may not incur existence dependency. Oracle CASE*METHOD
supports both ID dependency and non-transferability, which can be considered to be similar to the
notion of weak entity. The decision about what notation to use must be decided based on
knowledge of the data modeler for the selected notation, corporate modeling history, and the
availability of CASE tools. However, the pattern of many organizations is to stay with one ERD
methodology because of the investment in CASE software, application development and training
of systems personnel.

4.3 CASE Tools for ERD Methods

 Most CASE tools supporting data modeling still mainly supports diagram editing and at
most the identification of cardinality constraints. They still lack the ability to check the
correctness of the diagram at the semantics of application domains. For example, they do not
give any clue whether a ternary relationship or a set of binary relationships must be used. They do
not identify any redundant relationships, either, and does not optimize ERDs. For these problems,
most CASE tools rely on the knowledge of data modeler. CASE tools also need to support more
diverse notations semantics for flexibility

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 36

5 CONCLUSION

In this article, we compared ten different notations for ER diagrams which are widely used in
database textbooks and CASE tools for modeling and designing relational databases. According
to our investigation, we found that ERDs differ based on whether they allow n-ary relationships;
whether they allow attributes in a relationship; where and how they represent cardinality and
participation constraints; how they depict overlapping and disjoint subclass entity types; and
whether they model foreign keys at the ERD level. The result of these comparisons were
summarized in the section above. Each diagram was explained and illustrated using a common
problem domain.

 Some areas that need more research in ER modeling include the development of more
modeling heuristics, the identification and removal of redundant relationships, optimization of
ERDs, optimal use of specialization hierarchy (now this is in the realm of object-oriented database
design), and objective measures of quality of ERDs (see [29] for example). This issue must be
discussed in the context of the various cardinality and participation constraints and related
integrity constraints.

 From the mid-70's through the 1980's new entity-relationship methodologies offered
semantic solutions to the shortcomings of previous methodologies. With the saturation of ER
modeling techniques in the research community, new methods are not as enthusiastically received
unless the modeling designer proves how his new method provide more semantic power.
Extensions to the entity-relationship diagram continue to evolve to include new symbols to model
object-oriented concepts. Some of them are allowed to have non-atomic attributes for modeling
complex objects [4, 5]. Some of them are extended to include new semantics to model object
oriented concepts, such as methods, operations, and messages [30]. This only re-enforces the
flexibility and expressive power of this modeling technique.

Acknowledgments

Authors would like to thank you many students of Drexel University who generously provided
several iterations of the diagrams used in this article, including Ed. Forbes for Bachman Notation
James McNeil for five diagrams, and Xin Sun for reformatting the references.

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 37

References

 1. R. Elmasri, S. Navathe, Fundamentals of Database Systems. 2nd ed., Benjamin/Cummings,

Redwood City, CA., 1993.

 2. Michael Kushner, Il-Yeol Song, and Kyu-Young Whang, "A Comparative Study of Three

Object-Modeling Methodologies," Systems Development Management, 1994, 34-03-40 (1-
22). (Also in Data Base Management, 26-01-10).

 3. Janet Lind, Il-Yeol Song, and E.K. Park, "Object-Oriented Analysis: A Study in Diagram

Notations," Journal of Computer and Software Engineering, Vol. 3, No. 1 (Winter 1995),
pp. 133-165.

 4. K. R. Dittrich, W. Gotthard, and P. Lockemann, "Complex Entities for Engineering

Applications", in Proceedings of the International Conference on the ER Approach, North-
Holland, (1987), pp. 421-440.

 5. C. Parent and S. Spaccapietra, "About entities, complex objects and object-oriented data

models," in Information System Concepts: An In-depth Analysis, ED.. Falkenberg and P.
Lindgreen (eds.), North-Holland, 1989, pp. 193-223.

 6. P. P-S. Chen, "The entity-relationship model-toward a unified view of data," ACM

Transactions on Database Systems, 1,1 (March 1976), pp. 9-36.

 7. D. Reiner, M. Brodie, and G. Brown, et al. (eds.). "The Database design and evaluation

workbench (DDEW) project at CCA." Database Engineering, 7,4 (1985).

 8. T. J. Teorey, Database Modeling and Design: The Entity-Relationship Approach. Morgan

Kauffmann, San Mateo, CA. 1991.

 9. H. Korth and A. Silberschatz, Database System Concepts. 2nd ed., McGraw-Hill, New

York, N.Y., 1991.

10. F. McFadden and J. Hoffer, Modern Database Management. Benjamin/Cummings

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 38

Publishing, Redwood City, CA., 1994. 4th ed..

11. C. Batini, S. Ceri, and S. Navathe, Concatual Database Design: an Entity- Relationship

Approach. Benjamin/Cummings Publishing, Redwood City, CA., 1992.

12. R. Barker, CASE*METHODTM: Entity Relationship Modeling. Addison-Wesley
Publishing Company, New York, New York, 1990.

13. J. Martin, Information Engineering: Planning & Analysis, Book II. Prentice-Hall,

Englewood Cliffs, NJ, 1990.

14. T. Bruce, Designing Quality Databases with IDEF1X Information Models. Dorset House

Publishing, New York, New York, 1992.

15. C. Gane, Rapid System Development: Using Structured Techniques and Relational

Technology. Prentice Hall, Englewood Cliffs, N.J., 1989.

16. Bachman, Bachman Analyst, Bachman Information Systems Incorporated. 1992.

17. T. J. Teorey and J. Fry & Yang, "A logical design methodology for relational databases

using the extended entity-relationship model," ACM Computing Survey, 18,2 (June 1986),
pp197-222.

18. P. P-S. Chen, The ER Designer: Reference Manual. Chen & Associates, 1987.

19. I. Y. Song and T. J. Jones, "Analysis of binary relationships within ternary relationships in

ER Modeling," In Proc. of the 12th International Conference on Entity-Relationship
Approach, Dallas, TX., Dec. 15-17, 1993, pp. 265-276.

20. T. Jones and I.-Y. Song, "Binary Representations of Ternary Relationships in ER

Conceptual Modeling," in 14th International Conference on Object-oriented and Entity-
Relationship Approach, Gold Coast, Australia, Dec. 12-15, 1995.

21. S. Ferg, "Cardinality concepts in entity-relationship modeling." in Proceedings of 10th

Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459

 39

International Conference on Entity-Relationship Approach, (Oct. 23-25, 1991, San Mateo,
CA) T. Teorey (editor), pp. 1-30.

22 Il-Yeol Song and Kristin Froehlich, "Entity-Relationship Modeling: A Practical How-to

Guide," IEEE Potentials, Vol. 13, No. 5, Dec/Jan 1994-1995, pp. 29-34.

23. P. Scheuermann, G. Scheffner, and H. Weber, "Abstraction capabilities and invariant

properties modeling within the ERA," In the Proceedings of the 1st International
Conference on Entity-Relationship Approach. P. Chen (Editor), North-Holland, Elsvter,
Netherlands, 1980, pp. 121-140.

24. T. J. Teorey, Database Modeling and Design: The Fundamental Principles, 2nd ed.,

Morgan Kauffmann, San Francisco, CA, 1994.

25. R. Elmasri, T. Weddreyer, and A. Hevner, "The Category Concept: an extension to the

entity-relationship model," Data and Knowledge Engineering, 1,1, (June 1985), pp75-116.

26. IEF Technology Overview, Texas Instrument, 1990.

27. ADW Case Tool Seminar, KnowledgeWare, 1991.

28. T. J. Jones and I. Y. Song, "Binary Imposition Rules and Ternary Decomposition", The

Proc. of InfoScience '93, Oct. 21-23, 1993, Seoul, Korea, pp. 267-274.

29. D. L. Moody and G. G. Shanks, "What Makes a Good Data Model? Evaluating the Quality

of Entity Relationship Models," in Proc. of 13th International Con. on Entity-Relationship
Approach, pp. 94-111, 1994.

30. G. Gorman and J. Chovbineh, "The Object-oriented entity-relationship model (OOERM).

Journal of Management Information Systems, 7,3, (Winter 1990-1991), pp41-65.

